Does Promoting Girl's Schooling Miss the Mark?

John Knodel and Gavin W. Jones

Working Papers in Demography

No. 63

1996

The Australian National University
Canberra
Abstract

One major emphasis of the new population paradigm that emerged at the 1994 International Conference on Population and Development in Cairo concerned gender inequality in education and the need to promote girls' schooling at the secondary level, both as a goal of human development activities and as a means to encourage lower fertility and thereby reduce rapid population growth in developing countries. A major weakness of this approach to population and development policy is that it fails to address the socioeconomic inequality that deprives both boys and girls of adequate schooling. Such unbalanced attention to one dimension of inequality detracts from the attention accorded other dimensions. Moreover, while gender inequality remains an important feature of educational access in some regions, there are numerous countries, even within the developing world, where it is absent or very modest and in almost all countries it has been diminishing substantially over the last few decades. In contrast, inequality in education based on socioeconomic background is probably virtually universal and in most cases, we would argue, more pronounced than gender inequality. Data from various developing countries but especially from Thailand and Vietnam clearly illustrate this conclusion which has important implications for policy.

Acknowledgements: Much of the research for this report was done during a period when John Knodel was provided a visiting fellowship by The Research School of Social Sciences, Australian National University. Kimberly Akin and Pat Quiggin provided valuable assistance in preparing data.

DOES PROMOTING GIRLS' SCHOOLING MISS THE MARK?

John Knodel and Gavin W. Jones

The Issue

The science of demography has frequently been called into service to assist governments and international agencies to achieve developmental aims. This is a positive feature of demography's role: a discipline that can assist in promoting human welfare has much to commend it. There are dangers, however. Many observers have argued that demography has been excessively beholden to funding agencies at the cost of sacrificing academic independence and emphasizing a research agenda set by the funders rather than by the discipline (Szreter 1993; Demery 1988).

Demographers and the funding agencies on which they depend are also greatly affected by the outcomes of major world conferences on population held every ten years under United Nations auspices. The most recent such conference, the International Conference on Population and Development (ICPD), held in 1994 in Cairo, set some bold new agendas for population policy throughout the world. As a result of effective caucusing by feminist groups throughout the long processes leading to the ICPD and at the conference itself, women's issues were very prominent in the final document (McIntosh and Finkle 1995; UN 1995a). The urgency of improving women's rights and access to education, health, and political and economic power has also been argued forcefully in the women's summit in Beijing in 1995 and by the UNDP in its Human Development Report 1995, as well as by non-UN affiliated organizations involved in population issues.

The goal of reducing fertility rates in poor countries is present in the ICPD document, although in much more muted form than in the earlier world population conferences or even in the most recent regional ones for Africa and for Asia and the Pacific, held in 1992, both of which called for the setting of strict demographic growth targets (see PDR 1992 1993). Rather, pride of place went to women's rights, status and empowerment. (McIntosh and Finkle 1995:235). These issues are viewed in the ICPD Program of Action, and by the international organizations accommodating to it, both as
goals in themselves and as means to reduce fertility (and hence population growth) as part of efforts to achieve sustainable development. The need to eliminate gender inequality in education by promotion of girls' schooling is one of the central tasks advocated by this new view of appropriate population and development activities. This is fine as long as it is recognized that the paths to fertility reduction are many and varied, and that this particular version is certainly not the only such path. Moreover, whether it is the most effective path for fertility reduction has still to be established. But some of its more popularized formulations come close to saying that it is not only the best but the only acceptable way.

In the present commentary, we argue that the strong emphasis on eliminating gender inequality in schooling is appropriate educational policy in some regions and countries, but far less relevant across a surprisingly wide swath of other countries where the gender gap is either modest or virtually nonexistent. Moreover, the gender gap appears to be in the process of closing everywhere, in some cases so rapidly that a strong policy emphasis on closing the gap is no longer needed. At the same time, there is another gap, with serious implications for development and for equality of opportunity, as well as for demographic outcomes, that is largely ignored in the New Population Policy Paradigm. This is the gap in access to education by socioeconomic status. Not to put too fine a point on it, in most developing countries, the lack of opportunity for children from poor families, be they boys or girls, to access quality primary education or secondary or higher education of any kind, is a much more urgent issue than the gender gap in education. By placing almost sole emphasis on gender inequality, demographers risk aligning themselves with a rather reactionary perspective which fails to emphasize the urgent need to remove obstacles to greater socioeconomic equity in access to schooling. Moreover, they may also be ignoring a very important element of the relationship of educational progress to fertility decline: the effect of mass schooling and the expectations it creates about children's costs and benefits and the quantity/quality trade-off on the fertility of their parents (Caldwell 1980; Axinn 1993).

Caveats and Qualifications

In taking issue with the relevance of the emphasis on closing the gender gap in education for a number of regions and countries, we do not deny that pronounced gender
gaps in schooling are present elsewhere and deserve attention in those cases, as noted below. Also, although we limit our discussion to education and to the extent that gender inequality issues in education should be the predominant concern of educational and social planners, we recognize the importance of addressing a number of other issues of gender inequality besides education. These include the need for access by women to political and economic levers of power, and to health services which give adequate recognition to their special needs related to reproduction. We hasten to add that a gender sensitive approach to health services should not overlook the special needs of men, who after all are at the unfavorable end of a gender gap in life expectancy virtually everywhere.

It is frequently, and strongly, argued that female education is a particularly effective way to reduce fertility, improve child health, and promote other population policy goals. It is not our purpose to deal at any length with such issues. The strong negative association between women's schooling and fertility has been widely documented, as has the frequently stronger negative effect of wife's education than of husband's education on fertility (Cochrane 1983; Cleland and Rodriguez 1988; Schultze 1993; UN 1995b). The evidence from carefully conducted studies appears to support the importance of wife's education, despite the flawed methodology of some that find female education to be the key to fertility decline, for example by failing to control for the effect of income and class. But for balance, it might also be noted that although usually weaker, the impact of husband's schooling is found to have a significant independent effect on fertility (Martin 1995:197; UN 1995b)1. We also note that fertility has declined sharply in recent years in some countries (e.g. Bangladesh) which are far from closing the gender gap in secondary educational enrollments; and that it has failed to decline very much in the Philippines, where female enrollments exceed those of males. Moreover, recent research results are seriously questioning the strength of the link between maternal education and health outcomes such as infant mortality and height-for-age (Casterline, Cooksey and Ismail 1989; Desai 1996). Others have even questioned the causal link between women's

1 This is particularly the case in North African, Asian and Latin American societies. "Consequently, although investments in women's education are likely to have a greater impact on fertility, each partner's education reinforces the other's, rather than being a substitute for the other's" (Martin 1995: 197).
education and fertility (Graff 1979) or whether educational investments are a cost effective means of reducing fertility (Cochrane 1988).

Girl's Schooling and the New Population Policy Paradigm

A careful reading of the 1994 ICPD Program of Action reveals two major concerns regarding the schooling of children. The first advocates universal primary schooling (obviously encompassing both boys and girls) while the second emphasizes education for girls beyond the primary level. Principle 10 of the Program states "Everyone has the right to education, which shall be directed to the full development of human resources, and human dignity and potential, with particular attention to women and the girl child." Discussions of secondary and tertiary education in the Program concentrate almost entirely on reducing or eliminating gender inequality in schooling with almost no reference to reducing socioeconomic inequality for children in general in the access to such education.² For example, paragraph 4.18 states "Beyond the achievement of the goal of universal primary education in all countries before the year 2015, all countries are urged to ensure the widest and earliest possible access by girls and women to secondary and higher levels of education..." The UN's own subsequent analysis of the ICPD Program indicates the importance of women's education and points out that it is a new emphasis in terms of population issues (UN 1995c: p. 25).

Consistent with the ICPD Plan, gender inequality in schooling and the importance of fostering education for girls looms large in post-Cairo commentaries and statements of UN organizations such as the 1995 State of the World Population Reports (UNFPA 1995) and the 1995 United Nations Human Development Report (UNDP 1995). The same emphasis on promoting girls' schooling and the need to address gender inequality in education with little or no mention of reducing socioeconomic inequality for children of either sex is also being promulgated by major international organizations in the population field outside of the United Nations. For example in summarizing new strategies for slowing population growth in their publication Population Briefs, the Population Council calls attention to "educating children (especially girls)" or "increasing young women's access to education..." (Population Council 1995a). This view is expanded on in a Population Council Issue Paper which has a whole section arguing that "The education of girls is arguably the best development investment" (Population Council 1995b). In neither case is any mention made of a need to promote schooling for children in general who suffer from socioeconomic disadvantage. Similarly gender differences in education are being highlighted by Population Action International (1993) as illustrated by their report and data sheet devoted to the topic.

Measuring Inequality in Education

Reports and statements from international agencies advocating the promotion of girls' schooling typically cite two types of statistics to indicate the seriousness of the extent of female disadvantage in education: gender comparisons of illiteracy or educational attainment among adults and comparisons of enrollment ratios among boys and girls in the school ages. Examples of the former are found in the ICPD Program of Action and include the statements that 'there are approximately 960 million illiterate adults in the world, of whom two thirds are women' (paragraph 4.2) and '75 percent of illiterate persons in the world are women' (paragraph 11.1). Ignoring the apparent discrepancy in the figures cited, it should be obvious that a gender gap in the extent of illiteracy (or educational attainment) among adults is not an appropriate measure for judging the need to promote schooling of girls currently. For such a purpose, such statistics are characterized by what might be labeled a 'time bias', i.e. they do not reflect the current situation of children in school ages but rather the situation experienced by their parents and grandparents in the past.³ Thus the number of illiterate adult men and

² The complete Program of Action is published by the United Nations Department for Economic and Social Information and Policy Analysis (UN 1995a) and is reprinted in the Documents section of the 1995 March and June issues of Population and Development Review. In at least an additional eleven paragraphs, mention is made of either gender inequality in education or the need to give special attention to women in promoting education (paragraphs 4.2, 4.13, 4.16, 4.17, 4.18, 6.7, 11.1, 11.3, 11.8, 13.9, and 13.17). For example one of the objectives listed related to children and youth in paragraph 6.7, is "To encourage children, adolescents and youths, particularly young women, to continue their education...". In several other paragraphs mention is made of the need for equal education of boys and girls, but even here it is clear from the context that the concern is in closing what is assumed to be a gender gap in schooling favoring boys. Only in one of the paragraphs (13.17) is explicit mention made of the need to eliminate disparities in educational access owing to 'social or economic status' in addition to gender. That the main emphasis with respect to education beyond the primary level is to promote girls' schooling is clearly evident in the summary of the goals of the ICPD presented in the 1995 UNFPA State of the World Population Report (UNFPA, 1995, p. 10).

³ The average educational attainment level of adult women as a percent of that for adult men, one component of the "Female Education Index" presented by Population Action International (1993) is an example of another measure characterized by a 'time bias'.
women is a result of gender differences in schooling extending as far back as 60 or 70 years ago when the oldest cohorts of today's adult population were school aged. Even in most countries where the gender gap in primary schooling is now virtually nil, there is a predominance of women among adult illiterates, mainly because of past gender gaps in access to primary school.4

Adult illiteracy or inadequate levels of schooling of adults are arguably serious social problems in many developing countries but would need to be addressed by informal education programs. In such efforts, substantial gender gaps would merit attention. However, such indices are not sensitive indicators of the need for the formal schooling system to promote girls' schooling currently, the issue we are addressing here.

Far more relevant to measuring current inequality in schooling are enrollment ratios, the other commonly cited type of indicator. An enrollment ratio relates the number of currently enrolled students at a particular educational level (primary, secondary or tertiary) to the total population in the age groups that attend those levels. Except in the case of censuses and surveys, such ratios usually involve data from two independent sources: the numerator, i.e. the number of enrolled students, from information provided by educational institutions about numbers of students, and the denominator from population projections based on the census or other sources. Enrollment ratios also can be gross or net: the gross ratio relates all enrolled students in a level regardless of their age to the age group from which they are assumed typically to be drawn, even though some enrolled students fall outside the bounds of the age group. This explains why gross enrollment ratios are sometimes above 1. Net ratios exclude from the numerator those enrolled students who fall outside the age limits set for the denominator. Most enrollment ratios cited are gross, presumably because data on enrollment by level of schooling are usually not readily available by age of students.

Distortions in enrollment ratios can occur both because of discrepancies between the two different sources used for the numerator and denominator and from the use of gross ratios. These distortions are likely to be similar, although not identical, for boys and girls and thus do not have great impact on measures of gender inequality. However, gender comparisons of either gross or net enrollment ratios could be distorted if there are noticeable gender differences in the age of entering school or in the extent of grade repetition. For example, if boys are more likely to be left back a grade than girls, even if equal numbers of boys and girls start and finish a particular level, more boys than girls will be enrolled at any time because boys take longer to complete the level. As a result, the enrollment ratio of boys would be higher than for girls, giving a misleading impression of gender inequality in education at that level. This type of bias might favor boys or girls and indeed may be reversed in different settings. Differences in starting ages between boys and girls would further complicate the situation. Unfortunately there has been little systematic examination of this issue and how it might distort gender comparisons of enrollment ratios.5

Educational attainment as measured through censuses and surveys generally is a preferable way to measure levels of schooling and the extent of inequality of education in a population. One advantage is that both the numerator, the number of an age group finishing a particular grade, and the denominator, the number in the age group, come from the same source. In addition, the ages of those in the numerator and those in the denominator will be bounded identically. Also, as long as the lower bound of the age group examined is largely past the highest age at which persons attend that level, the proportion attaining will not be affected by differences in age of entrance or extent of grade repetition. Reasonably current and unbiased measures of gender difference in educational attainment can be determined by calculating gender-specific percentages

4 A secondary factor contributing to the excess of women among the current adult population is higher female survival which commonly leads to a excess of females at older ages where illiteracy is highest. This differential in survivorship also affects comparisons of the percentage illiterate among adult males and females (as opposed to the percentage female among illiterate adults) since older age groups usually constitute a higher proportion of adult women than of adult men. The effect of these gender specific age structure differences is undoubtedly small in most cases, however, in comparison to differences in past schooling.

5 Examination of data from Thailand and Vietnam, the two case studies examined in more detail below, suggests that boys take longer to finish and thus that enrollment ratios in those countries exaggerate the extent to which boys are schooled relative to girls. For example, analysis of the 1994 inter-censal Demographic Survey reveals that in Vietnam, among children 12-17, the age group typically used to measure secondary school enrollment ratios, 51 percent of boys but only 39 percent of girls currently enrolled were below the normal grade for their age. In Thailand, according to 1992 the Child and Youth Survey, 19 percent of currently enrolled boys aged 12-17 compared to 13 percent of girls were below the normal grade for their age.
completing each level of education for the age cohorts just past the age at which the particular level of education is typically completed.

Regardless of the measure used, documenting gender inequality in education is considerably easier than documenting inequality related to socioeconomic background. First, defining gender for this purpose is clear and simple and many sources of the requisite data routinely cross classify their data by sex. In contrast, there is no uniform definition of social and economic background and some aspects, such as wealth level, are not easy to measure. Second, enrollment ratios by any measure of children’s socioeconomic background are rarely available since, unlike for sex, enrollment data are not routinely classified by such characteristics. Indeed the differences in availability of data relating to sex and to socioeconomic gaps in schooling may be one reason underlying the very different extents to which international organizations call attention to these two forms of educational inequality.

Even in the case of educational attainment data from censuses and surveys, there is considerably more difficulty in measuring socioeconomic inequality than gender inequality. While gender is an inherent characteristic of the child in question, socioeconomic background typically requires information on the child’s parents or parental household. In most censuses and surveys, such information can be determined at best for children who are currently recorded in their parents’ household. For children who are at ages where many leave home to work or attend secondary or tertiary schools, the subset who are still in their parental households, and thus for whom the requisite socioeconomic data are available, is clearly biased with respect to educational attainment. The main advantage of the two country case studies presented below, Thailand and Vietnam, is that data on socioeconomic inequality in education are available from special surveys that have circumvented this problem.

Global Perspectives on Gender Inequality in Education

The UNDP’s Human Development Report 1995 provides a worldwide perspective on sex inequality in education, including trends over time. Fig. 1 shows the trends between 1970 and 1992 in the combined primary and secondary enrollment ratio by broad developing region. In every region, girls’ enrollment has increased at least as fast as boys’ over the period, thus either narrowing or almost closing the gap between their enrollment ratios. For all developing regions as a whole (not shown), the combined primary and secondary enrollment ratio of girls increased from 38 per cent to 68 per cent. This represented an increase from 67 per cent of the male ratio in 1970 to 86 per cent in 1992.

But there were major differences by region. In Latin America, there was no significant gap even in 1970, and in South-East Asia and the Pacific, the relatively small gap existing in 1970 had been virtually closed by 1992. Fig. 2 shows that in some countries of South-East Asia which we have been researching, the educational attainment gap by sex is very wide for women now in their 50s and 60s but has disappeared or even moved in favour of women at younger ages. In these two important developing regions, then, closing the gender gap in primary and secondary education is no longer an issue, though it may be of importance in particular countries and in particular regions within some countries. In East Asia, too, though a gender gap remains, it is not very wide and the enrollment ratio, even for girls, is not far below the average of more developed countries. In Sub-Saharan Africa, the gap between boys’ and girls’ enrollment ratios is not very wide, and the overwhelmingly important issue is the very low enrollment ratios for children as a whole.

We would argue then, that it is only in two major regions of the developing world—South Asia and the Arab State—that the gender gap in primary and secondary education remains wide enough and important enough in its likely deleterious effect on infant and child health and on fertility for it to deserve primacy among strategies for population stabilization and human development. These are regions where roles for women are constrained by strong cultural and religious beliefs, and where expansion of educational opportunities for girls needs to be tackled along with many other aspects of women’s roles. Expansion of girls’ education in these societies is very important, and merits priority on strategic grounds. Moreover, it is probably becoming more socially acceptable as an objective than are other aspects of women’s empowerment, and it is likely to have major benefits for other aspects of women’s roles that are difficult to change more directly.

At the tertiary level of education, the evidence is that gender gaps in enrollment ratios remain wide in most developing countries, although the gap is narrowing in relative terms (UNDP 1995). Much, then, remains to be done at this level. But it is hardly at the
tertiary level of education where we expect changes in female education to have major demographic consequences in the near term future. Nor, in a different demographic sense, in populations where still only a minority receive secondary schooling, are the large majority of children's lives directly affected by inequalities at the tertiary education level. This will eventually become relevant to broad shares of the population only after secondary education becomes widely accessible.

Note that it is also at the tertiary level of education that the widest socioeconomic gaps in access are felt. For example, in East and South-East Asia, the female enrollment ratio at the tertiary level is only three fourths that of males. This is unsatisfactory; but it is far less of a gap than is observed in tertiary enrollment ratios according to socioeconomic level, which typically indicate an enrollment ratio for the higher socioeconomic groups that is a number of times higher than that of the lowest socioeconomic groups (Tan and Mingat 1992, Chapter 5). In developing regions, children of white collar workers are overrepresented in higher education enrollments by a factor of more than 10 (13 in Asia and Africa; 11 in Latin America) compared with children of farmers (calculated from Gertler and Rahman 1994, Table 4.13).

The differentials in access to education by socioeconomic status are extremely wide, much wider than the sex differentials. But, as discussed above, they are less easily demonstrated because of lack of appropriate data. In the case studies in the following section, we will show that in two countries for which we have appropriate data—Thailand and Vietnam—the socioeconomic differentials are very wide indeed. In the present section, we will review some data for other countries which, although not all of a standard kind, demonstrate clearly enough that very wide socioeconomic differentials are the norm, not the exception.

In most African countries, the low enrollment rates and low grade completion rates, even at the primary level, are a major cause of concern. A recent multi-country study showed that the resources of a child's residential household—particularly the education of the household head and the household level of living—are determining factors in explaining variations among children in these aspects of schooling (Lloyd and Blanc 1995). The socioeconomic differentials become even sharper at the secondary school level.

In Brazil, 14-year old children had an average of 3.5 years of schooling if their father or mother had no schooling, rising to 5 years of schooling if their parents had 4 years of education and 6 years of schooling if one of the parents had around 12 or 13 years of schooling (Lam and Schoeni 1993: Figure 5). In this example, education of parents is partly a proxy for economic status. Higher educational attainment among parents is also associated with lower fertility; Lam and Duryea (1995) argue that better-educated parents are substituting quality for quantity of children.

Although data to illustrate social selectivity in education in Asia are limited, the fragmentary evidence does point to wide disparities in enrollment ratios as a function of parents' occupation. Data on cohort survival rates from the Philippines and India confirm that children of rich, urban, white collar parents have a much higher likelihood of finishing school than their poor, rural, farm parent counterparts (Tan and Mingat 1992, Tables 5.10 and 5.11). In Indonesia, enrollment rates increase with income in both urban and rural areas, the disparity growing as level of education increases (Gertler and Rahman 1994: Table 4.16). Thus by age group 16-18 (the upper secondary age group), school enrollment ratios rise from 36 per cent in the two lower quintiles of household expenditure to 53 per cent in the third and fourth quintile and to 65 per cent in the top quintile, and the relative differences are even sharper at ages 19-25 (Gertler and Rahman 1994: Table 4.16).

In Thailand, a 1976 study showed that "worst off" children, whose fathers had the lowest income and lowest education, who had the most brothers and sisters, and lived in the rural northeastern region, had probabilities of 0.53, 0.14 and 0.02 of reaching upper elementary, high school and post high school levels, respectively. The corresponding figures for the "best off" children whose fathers had higher income and post-secondary education, who had only one brother/sister and who lived in Bangkok were 0.99, 0.97 and 0.56 (Tan and Wannasiri 1980:ii).

In Asian countries as a whole, there is heavy public subsidization of the small group who reach tertiary education (Tan and Mingat 1992: 84). This group is highly selective of those from white collar backgrounds, who have higher family income levels (Tan and

6 There is one exception: the urban middle 40% of per capita expenditure classes in Java who exceed the top 20 per cent at the junior and senior secondary age levels.
Mingat 1992: 99-101). Put together, these two facts indicate a heavy usage of public funds to benefit those who are already advantaged in terms of socioeconomic background. Public subsidies for these levels of education, then, are highly regressive. Overall, "the education sector in Indonesia is far more effective in transferring resources to the rich than the poor" (Gertler and Rahman 1994:157). This assessment could be repeated for most developing countries.

The Examples of Thailand and Vietnam

Clear evidence of the large differences in children's education associated with socioeconomic background are available for Thailand and Vietnam where recent surveys provide data particularly well suited for such an analysis. The two countries also provide an interesting comparison given the sharp differences in their political and economic systems. Vietnam, as one of the few socialist states in the developing world, might be expected to evidence less socioeconomic differences than Thailand, a nonsocialist state in the same region. Both countries have also recently closed or reversed (in favor of girls) the gender gap in schooling at all levels (see Figure 2, footnote 5, Anh et al. 1995, and Knodel 1996).

Both the 1987 Thailand Demographic and Health Survey (TDHS) and the 1994 Vietnam Inter-censal Demographic Survey (VNICS) interviewed nationally representative samples of ever-married women 15-49, and included a special set of questions about the education of each of the respondent's living children regardless of whether or not the child lived in the sampled household. As a result of this innovative, yet simple, modification of the typical DHS style questionnaire, detailed information on the socioeconomic characteristics of the children's parents, as well as their parental households, can be related to data on children's education, regardless of where the children were living. In contrast, samples of children derived from household listings, a

common source of data for other studies of children's education, can be linked at best only to information for co-residential parents and thus, as noted above, can be quite biased.

Based on the information collected in the two surveys, the percentage of boys and girls attaining primary, lower secondary and upper secondary education can be examined in relation to two basic measures of socioeconomic background: the wealth level of the parental household (based on a combination of information on selected household possessions and the quality of the house) and the educational attainment of the child's parents (the sum of the highest grade attained by the two parents).

Figures 3 and 4, referring to Thailand and Vietnam respectively, display the results for the age groups of children who normally would have been old enough to have recently attained the level of schooling in question at the time of the survey.

In both Thailand and Vietnam, sharp differences in children's education are associated with each measure of socioeconomic background. Moreover, the socioeconomic differentials are far more pronounced than the gender differences. In fact, the gender differences shown in the figures, modest as they are, are still greater than would be found among children currently in school. This is because the results shown are subject to the 'time bias' referred to above, since the data refer to age cohorts who are somewhat past the current school age, and in the case of Thailand are based on data from 1987. As noted above, girls' educational attainment has caught up with that of boys in the last few years.

For Thailand, both the absolute and relative socioeconomic differences are clearly weaker for the completion of primary education, defined as attaining a sixth grade

3 The VNICS was conducted by the General Statistical Office of Vietnam (1995). The TDHS was conducted by the Institute of Population Studies, Chulalongkorn University (Chayovan, Knodel and Kaminwisetpaa 1988). In the VNICS, information about education was asked for children age 10 and over while in the TDHS educational information was asked for children 6 and over.

4 Extensive evaluation of the educational data in the two surveys has been conducted in association with previous analyses. See Anh et al. 1995 and Knodel and Wongsaith 1989a.

5 The educational measures shown in Figures 3 and 4 are slightly different for the two countries as indicated in the footnotes of the figures. The particular educational measures have been chosen based on several considerations: meaningful junctures in the prevailing educational systems, ways in which the data have been coded, and complications emerging from changes in the educational systems (see Knodel and Wongsaith 1989a; Anh et al. 1995). The measures of household wealth and parental education have been categorized to represent quintiles to the extent possible. In the case of Thailand, strong clustering of education at four years of schooling for both parents results in a disproportionately large share of children having parents in the medium category (which represents a sum of 8 years of parental education). For more detailed descriptions of the household wealth level indices see Knodel and Wongsaith 1989a, footnote 8 and Anh et al. 1995.
education, than for attaining secondary levels. In Vietnam, differences in completion of primary school show a fairly substantial association with both household wealth level and with parental education but differences are between the two lowest categories and not very pronounced between successive pairs of higher wealth level categories. In both countries the largest relative differences are at the upper secondary level. For example, according to the Thai data, the chances of a child from the top quintile of household wealth category having any upper secondary schooling is almost eight times greater than for a child from the lowest quintile (59.2% versus 7.7%). According to the Vietnam data, completion of upper secondary schooling is 14 times higher for children from the wealthiest households compared to those from the poorest (46.8% versus 3.4%). Stark as these differences are, comparisons based on parental education are even more pronounced.

It is interesting that despite the very different political and economic systems in Thailand and Vietnam, socioeconomic background plays such a key role in both countries. The major difference apparent is the sharper break between the proportions finishing primary and those starting lower secondary level school in Thailand compared to Vietnam. In part this reflects the earlier date of the Thai survey (1987 versus 1994). In recent years, the proportion continuing to the lower secondary level in Thailand has increased substantially (NSO no date). The greater escalation of costs associated with entering lower secondary school in Thailand compared to Vietnam might also play a role.

In Thailand, as of the time of the 1987 survey, public primary but not secondary education was free of tuition costs. Direct costs of sending a child to secondary schooling (e.g., tuition, books, uniforms, transportation) were fairly substantial for the average Thai family (Knodel and Kaufman 1993). Under the socialist system of Vietnam, until recently most direct costs of schooling through the secondary level were absorbed almost entirely by the state and did not fall on families themselves. While this has changed to some degree following the introduction of economic reforms (known as doi moi) in the mid-1980s, for most of the age range of the Vietnamese children on which our analysis is based, schooling would have occurred before these changes (World Bank 1990 and 1993). Despite the subsidization in Vietnam, indirect costs might still weigh heavily on a poor family, particularly given the lower average standard of living in Vietnam compared to Thailand. Thus although the break between primary and lower secondary in Vietnam is not so sharp, a steep socioeconomic gradient exists at most levels.

Figures 3 and 4 also reveal a modest interaction between gender and socioeconomic background differences in children’s education. Both in Thailand and Vietnam, a gender gap unfavorable to girls is more evident at the lowest household wealth and lowest parental education categories than at the highest, where in some cases the gender gap is reversed. This suggests that addressing the socioeconomic gaps in schooling, at least in the two examples examined here, would help the groups where the remaining gender gap is most serious.

Discussion and Conclusions

The basic point made in this paper is that the new Population Policy Paradigm arising from the ICPD in Cairo and its subsequent promulgation gives excessive emphasis on closing the gender gap in schooling. We believe there are two main problems with this emphasis. The first is that in many parts of the world, including places where fertility is still quite high, there is little or no gender gap to close. The second is that, even where there is considerable gender inequality in education, the almost exclusive emphasis on closing this gap diverts attention from a more pronounced and at least equally fundamental dimension of inequality in schooling—the socioeconomic gap.

The goal of social justice requires that both of these aspects of inequality be addressed. What is of concern is that in the emerging new demographic orthodoxy, the assumption that closing the gender gap will reduce fertility leads to myopia on two fronts: a failure to stress the need to raise household incomes of the poorer groups of the population so that they can afford to keep their children in school; and a neglect of the highly unjust allocation of public subsidies for education in ways that exacerbate...
inequality of income. Not only is this emphasis in effect, if not in intent, inequitable; it is also short-sighted in ignoring an important branch of the demographic literature which leads us to expect that closing the socioeconomic status gap, by contributing to achievement of mass schooling, will contribute importantly to fertility reduction through its influence on the childbearing aspirations of the parental generation.

The evidence presented in this paper has established that, in most developing countries, socioeconomic gaps in progression through the school system and particularly in secondary and higher educational enrollments are stark, and present a greater challenge from a social justice perspective than do gender gaps. Socioeconomic gaps are wide in socialist as well as non-socialist settings, as the Vietnamese and Thailand case studies showed. They are reinforced by the regressive pattern of public subsidization of education. One of the greatest challenges to social and economic planners is to devise educational funding approaches that will reduce and, ideally, reverse this regressive pattern of support to education. The demographic literature on education and fertility is almost entirely free of any recognition that such a challenge exists. This is another example of the long-criticized failure of population specialists to be sensitive to socioeconomic inequality.

Our argument that closing the gender gap in education should not be the priority concern in much of the developing world should not be construed to deny that strenuous efforts are needed to increase enrollment ratios for girls where these are low. In countries of South Asia where the gender gap in education remains stark (for example, India, Bangladesh and Nepal), the cumulative subsidization over their school careers of the best educated 10 per cent of young people is particularly striking (Tin and Mingat 1992: 84). This means that girls from the lower socioeconomic groups are severely disadvantaged on two counts—because they are from the lower socioeconomic groups and because they are female. Their needs should therefore receive special attention, but not at the cost of ignoring the needs of boys from the same disadvantaged socioeconomic groups.

Difficult resource allocation issues arise here: will financial measures to promote girls' schooling necessarily be at the cost of boys' schooling? Is it a zero sum game? Possibly not, but in a world where resources for social development are limited and tend to receive low priority, it is hard to envisage that efforts emphasizing girls' education would not be made at some cost to what would otherwise be devoted to improving education of children of either sex. If this is indeed the case, resource limitations will require decisions at the margin about the extent to which differential attention to girls' education is justified on social justice grounds and on pragmatic grounds of greater efficacy in lowering fertility and infant mortality.

Raising enrollment ratios of girls in these countries implies not so much the need to get them into school in the first place (which on the whole happens), but to increase retention rates within the school system. It is low retention rates that are responsible for the low enrollment ratios for both girls and boys from disadvantaged socioeconomic groups at upper primary grades and in secondary school. Achievement of mass schooling, and its benefits for lowering fertility and mortality rates, requires a solution of the retention problem—especially for girls in some settings, but importantly for boys as well.

But these issues refer particularly to those regions where the gender gap remains wide. We conclude by returning to the key thrust of our argument—that in many countries and regions the concern should be to raise enrollment ratios, and the quality of schooling, for children, and that in such countries a specific gender focus is misplaced, or should be given only secondary priority relative to reducing socioeconomic inequality for both sexes.
References

Lam, David and Suzanne Duryea. 1995. Effects of schooling on fertility, labour supply, and investments in children, with evidence from Brazil, Research Reports No. 95-351, Population Studies Center, University of Michigan.

Figure 1
Combined Gross Primary and Secondary Enrollment Ratios (%), 1970 and 1992

Source: Derived from Figure 2.1, UNDP, 1995.

Figure 2: Ratio of Percentage of Females to Percentage of Males Attaining Lower Secondary Schooling or Above, by Age Groups, 1990 or Later

Note: Vietnam data refer to attainment of any secondary education; all other countries refer to completion of the lower secondary level.

Sources: Thailand data are from original tabulations of the 1994 Child and Youth Survey; Vietnam data are from original tabulations of the 1994 Inter-censal Demographic Survey; Philippines data are from unpublished tabulations supplied by National Statistics Office, Manila; all others are from calculated published volumes of the national 1990 (Singapore and Indonesia) or 1991 (Malaysia) censuses.
Figure 3
Educational Attainment by Parental Wealth and by Parental Education, Thailand 1987

Note: Completion of primary education refers to 14-24 year olds; attainment of any secondary education refers to 15-24 year olds; attainment of any upper secondary education refers to 16-24 year olds.
Source: 1987 Thailand Demographic and Health Survey

Figure 4
Educational Attainment by Parental Wealth and by Parental Education, Vietnam 1994

Note: Completion of primary education refers to 15-24 year olds; attainment of any secondary education refers to 16-24 year olds; completion of upper secondary education refers to 19-24 year olds.
Source: 1994 Vietnam Interannual Demographic Survey